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SECTION 1
INTRODUCTION

The dynamics of a helicopter blade in forward flight are usually
described by a system of differential equations with periodic coefficients.
A growing acceptance of hingeless helicopter blades for conventional
helicopters flying at rélatively high forward flight speeds has intensified
the need for fundamental research on the aercelastic stébility of such
systems. |

Studies dealing with the effect of forward flight (or periodic
coefficients) have been primarily devoted to the study of flapping insta-
bility at high advance ratios (Refs. 1 through 8). A limited number of
studies dealing with the effect of periodic coefficients on coupled flap-
lag (Refs. 9 and 10) or coupled flap-lag-pitch (Ref. 11) motion.were also
conducted. The case of cbupled flap-lag motion has been, somewhat incon-
clusively, investigated by Hall (Ref. 10) using multivariable Floquet |
theofy. The same problém was also considered by Friedmann and Tong (Ref. 9)
but the treatment was limjited to iow advance ratios (p < 0.3). Coupled,
linearized, flap-lag-~torsion motion has been investigated by Crimi
(Ref. 11) using a modified Hill method. In both cases (Refs. 10 and 1l)
only a limited number of numerical results were obtained and the physical
mechanism of the aeroelastic instabilities has not been clearly identified.
In particular, the degree of freedom which is responsible for the instability
was not identified and the results for forward flight were not compared

with those for hover,



Recent investigation of the aercelastic stability of hingeless blades
in hover (Ref. 12) indicated that the aercelastic stability boundaries are
quite sensitive to the number of degrees of freedom employed in the analy-
sis, Therefore it is important to determine how the flapping behavior of
a blade at high advance ratios is modified by the inclusion of the lag
degree of freedom. This important problem; which has not received adequate
treatment before, is one of the main topics of the present study.

The mathematical methods used in previous studies dealing with the
effects of forward flight were:

(a) The rectangular ripple method (Ref. 1)

(b) Analog computer simulation (Refs. 3 and 4)

(¢) Various variations of Hill's method (Refs. 2 and 11)

(d) Multivariable Floquet-Liapunov theory (Refs. 6, 7 and 10)

(e) Perturbation method in multiple time scales (Refs, 8 and 9)

The mathematical method employed in the present study is the Floquet-
Liapunov theorem, and the transition matrix is evaluated by two separate
nethods:

1. Direct numerical integration using a fourth order Runge-

Kutta method
2. A new and computationally efficient method developed by Hsu
(Refs, 23 through 25) which is a multivariable extension of the
rectangular ripple method.
It is also shown that careful use of these methods enables one to circum-
vent problems associated with identifying the results encountered in
previous studies (Ref. 10),
In addition, a new and convenient approximation for the reversed flow

region 1s developed. This approximation is believed to be adequate for



most blade stability analyses. Finally, the effects of various important
parameters such as collective pitch setting, structural damping, droop and

precone on the stability associated with forward flight are investigated.




SECTION 2
THE EQUATIONS OF MOTION

2,1 Basic Assumptions

The geometry of the problem is shown in Fig, 1. The following basic
assumptions were used in deriving the equatiéns of motion: (a) The blade
is canfilevered at the rotor hub. It can have an angle of droop BD at the
root. In addition, the feathering axis can ﬁe preconed by an arngle BP.
The angles BD and ﬁP are small. (b) The blade is torsionally rigid and can
bend in two directions normal té the glastic axis, {¢) The deflections of
the blade are moderately small so that terms bf O(EDZ) can be neglected com-
pared to one. (d) Moderately large deflections have only a small effect on
the tension due to elastic effects since one of its ends is free, therefére
a linear treatment of the eiastic restoring forces is adequate. (e} A two-
dimensional aerodynamic strip theory is uéed with C(k) = 1 and apparent mass
effects are neglected. (f) Stall and compressibility effects are negiected.
(g) Reversed flow is Iincluded using an approximate model for reversed flpw
described in Appendix D. (h) A single blade analysis is performed, where the
blade 1s attached to an alrcraft with infinite mass,

In deriving the equations of motion, an x, y, x coordinate system
(Fig. 1) ro£ating with.the shaft of the helicopter‘and attached to the
blade is used.
2.2 Derivation of the Equations of Motion

The equations of dynamic equilibrium of a blade undergoing only

bending in flap aﬁd.lag can be taken from Friedmann (Ref. 13):
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where Py and Pz include the aerodynamic and inertia loads distributed

along the span of the rotor blade,
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enoting the elastic

(2]

oupling effect by Eq and Eczas defined in

Appendiz E, Egs. {(E.3) and (E.4), and assuming that e, = 0, Eqs. (2.1)

A

can be rewritten as

r 2 2
2 - 0w v
a7 1r a e 3 aw
LoD+ E + E - [T(x ) --j =7 (2.2)
sz L v el x c2 ax2 axo o’ 9x z
o o )
[ 2
2 -~ 3% a%w
] [ e e 9 v
e EI - - — ] . =
w2 P27 B 7 * R TT | T [T(Xo) ax] s (2.3)
ol * 3x0 ] (i) o

The loading terms in the X, y and z directions with nonlinearities up
to and including second order terms in displacements can be written as

(Reference 13)

aT 2 %% *
Px=—§-;;-=—m9 []{-(Xo+el+lﬁh2v] (2.4)
- o2 [%* * *
Py Ly m £ v - (v) + 2u] - 8q1, Q vy {2.5)



,l-

. % : '
Pz = Lz -m Q° w f BoF £ v, (2.6)
where terms marked by ..~ are small+ and have been neglected. The last
terms in Eqs. (2.5 and 2.6) represent viscous type structural damping.

The boundary conditions for a cantilevered helicopter rotor blade

are.
2 3
BWE(o,t) 3 we(l,t) 3 we(l,t)
wy (0,8) = —= =y =3 =0 (2.7)
o X ox
o o
av_(o,t) 82w (1,£) 5% (1,t)
(ot)= e = e = € =D
Ve 10 ox 2 3

() dx ax
. o} o]
The total displacements in the x,y,z directions are given by

(Ref. 13)t1

: 2 2
‘ Xy 2 1 f° (Bve) (Bwe.
u = -w, (Bp + Bd) -5 (BP + BD) -3 axb + axD dx1(2.8)
ve=v, -xB8 ' ' (2.9)
wew +x) (B +8) | (2.10)

where the las; term in Eq. (2.8) represents the shortening effect due to
bending under the assumption of an inextenéible blade.

Applying Galerkin's method on the equations of motion, the spatial
variable is eliminated. This is achieved by representing the elastic part
of the displacements v and w by a sum of normal modes in flap and lag

respectively.

Ve = = 3 By (x)) h () = - &y h_ | 2.11)
= |

with assumption C p.4
Tt ' '

with sin 8 = 6



k‘ ’ - - - - BT - e - - - [ — - e Ce e = e ee — —- -
where it i1s understood that in the present study repeated indices imply
summation, unless otherwise stated. Using Eqs., (2.11) and (2.12) the dis-

placement field can be rewritten as

‘ xoﬁ 2
w=-2n g By +B) -5 (B, +8p
%
o
£ T 2 —
-4 f [(”k gk) + (’yn'l hm)z] dx, (2.13)
o]
v=-Ly h -% %89 (2.14)

Next Eqs. (2.13) through (2.15) are substituted into the combination of
Equations (2.2) through (2.6). The resulting flap equation is multiplied
by Ezni d§; while the lag equation is multiplied by £2 Yi dE; and the equa-
tions of motion are integrated over the domain 0 < % < 1, In this process
the integrals associated with the elastic properties of the blade are
integrated between 0 < X < &, while those associated with the aerodynamic
lu@amim%mmde&nK<%<§.TMsmemmﬂMSthu

final nondimensionalized form can be written as

L 2w, 5+, w < -8 +5,. &
Mrg Byt 2 Upg Mpy Vgp By Mpg Opg 85 T |7 B T PPy m] By
=1 =3 *  _cs
= By (BptBy) + 2(Bp*Bp By, Dy * Byp By * Ay

i=1,2, ... M (2.16)



W, R+ B, +M . . b, =8 h +©E°
Mg g Mgy by M W by =B b ED g

+|25. - z(ﬁ ) i h - 2(&' g g, + B.6 |- B0
imr YVipel ™ T N/ 410 k =% D i
58 & L5l
+ ZBim I‘lm + B 11 2(B +BD)B k + A.Li

i=1, 2, ... N (2.17)
where there is no summation.over i on the left hand side of Equations
(2.16) and (2.17).7T

In deriving Equations (2.16) and (2.17), ;he orthogonality relations
for rotating beams given in Appendix A and the boundary conditions were
used. The various coefficients used in the equations are generalized
masses and are defined in Appendix B. The terms AFi and ALi are general-

ised aerodynamic coefficients given by the expressions

B : ,
% .]” '
AFi = —2'— J L (2,.18)
b A
% -IP -
ALi = - 52—]":' J LY "{i dXo . (2.19)
b A .

Next the aerodynamic terms will be specified. The loading terms in

the z-direction and the y-direction can be obtained from Friedmann

(Ref. 13).
L_ = ap,bRU; (U6 ~ U,) | (2.20)
C
Do
Ly = —ap [ (U B - U Y+ UTZ} (2.21)
+ —
The term S, = - (MY)- is usually zero,
imr



where the velocities UP and UT are given hy

UP = Ow + QR[A + W cos P ax°] (2.22)
U, = 93 + 0R {§-+ U sin Y + u cos Y EE—] (2.23)
T axo ‘ .

The last term in Eq. (2.23) represents the component of tangential
velocity due to radial flow along an elastically deformed blade. This
term has been sometimes neglected even though it is not a higher or&er
term. The additional terms due to this effect will be underlined by _
for future reference.

For the purposes of this study, the inflow ratio A in Eq. (2.22) was

evaluated using an expression for constant inflow ratio in hover, given

by (Ref. 13)

cai | 249
A:E{ l+'a—a—-— J (2.24)

This inflow relation is equivalent to taking the induced velocity
at 3/4 blade radius as representative of a constant induced velocity over
the whole disk., It is clear that for forward flight one should use the

expression

A= u tan oy + 72\ + 2 (2.25)

However, use of this expression would have required the use of a trim pro-
cedure by which 6 is changed as a function of u. This approach was used
in Ref. 13, where it was concluded that the changes dictated by such a
trim procedure have the tendency to mask the effects due to forward flight,
Therefore, in order to illustrate clearly the effects of forward flight,

it was decided that the use of Eq. (2.24) was more convenient,

10



By substituting Eqs. (2.13) througﬁ (2.15), (2.22) and (2.23) into
Eqs. (2.20) and (2.21), the expressions for Lz and LY can be obtained,
Carrying out the integrations in Eqs. (2.18) and (2.19) yields the general-
ized aerodynamic loads AFi and ALi' The complete expressions for AFi ané

ALi are given in Appendix C. The various flap coefficients Fl,...,F24 and

lag coefficients Ll,...,L24 for the aerodynamic loads are defined in
Appendix B. |
2.3 Linearization of the Equations

The equations of motion will be linearized about a convenient equilib-
rium position which is chosen as the static equilibrium position in hover.T
The equations cannot be linearized about a forward flight condition having .
a particulaf value of | since there is no guaraﬁtee that such an equilibrium

position exists as a point of stable equilibrium,

The linearization is performed by writing

o _ 0
Ve TW T b, = N8 * A8y (2.26)

. .0 _ o
Ve = Ve + Ave [Yhhm + ymam@
where the © superscript denctes the static equilibrium position.

From Eqs. (2.16), (2.17), (2.26) and Egqs. (C.3) and (C.4) in

Appendix C
Moy a%i g5 + ;ik & - Eﬁ _h; =- g:lt (Bp + B
+ % (-g-)z [Fie - Fi A} ' i=4,2, ..M (2.27)
My gy g - Eg b~ Egy &y = - By By + By By

i=1,2, ....M (2.28)

No summation over i on the left hand side of Egs. (2.27) and (2.28),

+For every case stability of the equilibrium condition iﬁ hover is

automatically checked.
‘ 11



Considering the case of one elastic mode for each degree of freedom

and dropping the subscripts on the flap and lag coefficients, we have

- =2 —ﬁ) ) Cs .0 _ =1
(1‘“1?1_+E,51 B Ry = =By (Bp + 8

(2.29)
vy {2\ [.1 2
2 =\ o _cs o _ =IO —11
(MLl“’Ll‘E) by = BBy == B By By ByP
2 C
¥ (A 1o S0y 11 - 1202
.0 { =SS NEN (2.30)

Egs. (2.29) and (2.30) can be solved for the static equilibrium position

g -1
1 ]
RURS
0
<
where
Mpy 551 + £ E®*
[S:ll = _ B (2.32)
- E¥ M, aﬁl ~ E°
1 2\2 £ 1 2
B, (BP+8D)+%(E) (F@-FA) 1

- _

(711 <10 Y (NP4, Do . o1, 2.2
.L_(Bl —B)BD6+2(R) [L+ + LB LAJ

1 a

J

Using the order of magnitude analysis in Appendix C, only generalized
aerodynamic terms up to and including second order terms are retained in
the flap equation. Thus Eqs, (2.16), (2.31) and Eq. (C.3) in Appendix C

become

12
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one has
M. M o+ lm won.. +n0(-95 . + % - 28.0 B°
Mpp 80y Ma%aNspy T Py 17280, m"nl D

c c
+ X ( ) [L13u cosy(B+8, ) + 12 2y sinp ,._Pg + 114 5 & Do

+ Ll3;\ ® 0+ Ll6

o cos\P ]]Ah + [MLlel _—E %(%)Z[LZOE)\ cosyp

13



+ 1201 (g 48)0(1 + cos 29) + 12042 D° sin 2 + L23 2 cosy —22
2 — 2[’
21 I_J'._ i rat=] .-».0-” AL i N 7 'S /;g:.\ 7 El
+ L 5 (1 + cos 2009 slll Ay + /.unlll 1 + 2(;5P+5D)bll + 42- R) L—L ]
g i g g g |
- L8 g U sinyd + LBZU-% cosw(B +5 )+ L ZA + L172 E-u cosy g1
22 3 = 22l 10
+ I R U cosyB hl:” Agl +{ - +:£- (—E) - L7y cosyl
11 2 11 2 11
- L %—-sin 248 + L™ p” (By+B,) (1 + cos 2¢) + L 2Au cosd
2 2, o, 2’ . o
+ L7 u(1+ cos 2Y)g. + L7 £~ (1 + cos 29) 6h ] Ag. =
1 2 1]{ 81
2 2 ¢
%
1 (E) I r? “ (B+8) % (i+eos 2¢) + L2 22 (1-cos 2¢)-+E,u(8 +8,)0

>

ll'2

[N l'!:‘

2
Iﬂumg+ 1cmw+P2uJE+1,mﬂsmw+[2 Pa)Js.zg

+ L]'0 U cosyd + L %— sin 2¢y06 - L11u2(8P+BD) {1+cos 21{))-L112Au coszp]gi

20 20 1>
+ [— L AU cosyf - L l;zj__ (BP+BD)6(l+cos 2y) - L U = sin _21,1)

1
-
Mo
w
[p]
=
o
o
o
<=
0
m,w
L
=g
o)
+
|
-
o
-
NIT_‘
o

+
Ly
b
%]
-
+
e}
Q
n
]
=
o
[an)
S |
4,01
= G
j=pd
— QO

(2.35)

The third order terms in the lag equation are underlined by for

future reference. Also, the radial flow terms are underscored with .

Egs. (2.34) and (2.35) are a system of coupled linear periodic equations

under the influence of periodic forecing,

14

The periodicity in the coefficients



and the forcing are due.to the effects of forward f£light. The equations are

éouyled through the aerodynamic,.inertia and stiffness terms,
Furthermore,_for mathematical convenience the equations of motion

have to be transformed into a system of first order equations, This is

achieved by making the following substitutions. .

A*
Bl =71
8gy =y, K - (2.36)
oh
1773
&hy =y,

Thus, the equations of motion in their final form can be written as

=AW y+£f W (2.37)

&g ¥

Where A is a 4 x 4 matrix and f is a column matrix, The elements
éf both are defined in Appendix C.

The equations of motion (2.37) will have a different form for the
normal and reversed flow regions, The representation of the reversed
flow together with its effect on the form of Equation (2.37) is described

in Appendix D,
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SECTION 3
MATHEMATICAL METHODS FOR DETERMINING
THE STABILITY OF
LINEAR PERIODIC SYSTEMS
3.1 Introduction
This section will comsist of a brief summarj'of the methods available
for obtaining the solutions of homogeneous systems of linear differential

equations with periodic coefficients. In general such a system is governed

by the following set of equations

=AM y (3.1)

~

g %

Where y is the state variable column matrix and A(Y) is ann x n
periodic matrix whose elements have a common period denoted by T, thus

é(w+T) = é(w) (3.2)

The problem of determining the stability of such a system has been
considered in the literature associated with various fields:

(a) mathematics (Refs. 14-16)

{b) linear control system theory (Refs. 18-20)

(¢} dynamic stability or parametric excitation problems (Refs.

21-25)
(d) structuial dynamics problems related to helicopter rotor blade
dynamics (Refs, 1, 5, 6, 10, 26-29)

Unfortunately, there seems to be a considerable lack of commupication
between researchers working in these areas, which led to a considerable
amount of overlap and duplication of efforts., rTherefore it is believed
that the vérious references mentioned above could be useful to other
researchers dealing with similar problems. It should be mentioned that

the list given above is far from complete and a complete review of the
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bibliography dealing with equations with periodic coefficients is beyond

the scope of the present study. From these references it is evident that

in the past the following methods have been used:
(a) Hill's method of infinite determinanis (Refs. 21, 26 and 11)
(b) Multivariable Floquet-Liapunov theory (Refs. 5, 6, 10, 18-20,
23-25, 28)

(c) Perturbation Methods (Refs. 8, 13, 21, 22)

The first method has proved to be cumbersome and numerically ineffi-
cient, The second method is the most general one, its main drawback has
been the computational effort required for evaluating the transition ma-—
trix, This can be overcome by using Hsu's method. The third method is
limited t¢ cases when the parametric excitation can be expressed in terms
of some small parameter which tends to limit the generality of the method,
3.2 Multivariable Floquet-Liapunov Theory
3.2.1 The Transition Matrix and Its Properties

The solutions of a system of differential equations with periodic
coefficlents are closely associated with the concept of the state transi-
tion matrix, therefore it is important to start by defining this matrix.

The transition matrix, or the fundamental matrix, is a matrix whose
columns contain the linearly independent solutions to Equations (3.1). Thus

the transition matrix in general is written as

SR FACAR RSN CR S R R (3.3)

where each of the columns in equations (3.3) satisfies Equation (3.1)

with the initial conditions given by
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Y (\DO) = (3.4)
o ifk

to yield gk(w,wo) . Thus clearly
?(‘Poswo) = E (3.5)

Two important properties of the transition matrix are given below

(Ref. 18)
o
det ?(IP,Q'JO) = exp L trace é(c’)d". (3.6)
0 .
W) = 2D Sy, ) | (3.7)

3.2.2 The Floquet-Liapunov Theorem and Its Consequences
Proof of the Floquet-Liapunov theorem is given in References 15 and
18, for conciseness only the theorem itself will be stated,

Floquet-Liapunov Theorem, If A(Y4T) = A(P) then the transition

matrix associlated with Equation (3.1) can be written as
-1 R{y~ '
2wy = 2 S ¥ Volpy ) (3.8)
where
P(HT) = P(¥) (3.9
and R is a constant matrix. '

It can be shown that in general (Refs. 15 and 18)

X = ¢ = 9(1,0) | | (3.10)

where C is also a constant matrix. Furthermore P(Y) is given by
- -R
) = o(y,00e Y (3.11)
The most important consequeﬁces of this theorem are

(a) Knowledge of the transition matrix over the period

19



0 £ ¢ £ T deternines the solution to Equation (3.1) everywhere

because from Equations (3.7) and (3,10)

WHT,0) = 2(h,00en (3.12)
and in general
RT\®
2tsT,0) = 81,00 (o) (.1%)

where s is any integer and 0 £ ¢ £ T,
Therefore using Equation (3.11) g(w) is determined everywhere.

(b) Knowledge of the transition matrix at the end of the period determines
the stability of the system. From Equation (3.10) the transition

matrix at Y = T clearly determines both C and R. Here two cases need

Case (I) The matrix C had n-independent eigenvectors associated with
‘n-distinct eigenvalues, For this case this alsoc means that R has
n—independent eigenwvectors, therefore from elémentary linear algebra a
similarity transformation can be found such that

g RQ=2 (3.14)

where the columns of Q are the n-linearly independent eigenvectors of R and
% is a diagonal matrix whose elements are the eigenvalues of R. Contbining
equations (3.10) and (3.14) and using the definition of the matrix exponen~

tial (Ref. 15) one has

eET = geéT Q—l =C
or
AT o A= Q“l cQ= Q'l ¢ (T,0)Q (3.15)

where A is a diagonal matrix containing the eigenvalues of the transition

matrix at the end of one period. The eigenvalues of © (T,0) or the charac-
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teristic multipliers are related to the eigenvalues of R, denoted char-

acteristic exponents, through the relation
AT
ko

= A k=1,2, ...nmn ‘ (3.16)

& k

Clearly Ak and Ak are both Comﬁlex quantities in general, thus

Ak = ck+iwk (3.17)
Ak = AkR+iAkI
from which
. _ 1 2 2
C'k = 57 1n [AkR + Ak) . (3.18)
A
G, = % tan T L - (3.19)
kR

the quantity W, can be determined according to the Floquet-Liapunov
theory only within an integer multiple of the nondimensional period.
The stability criteria for the system is related to the eigenﬁalues

of R or the real part of the characteristic exponents £ . The solutions

k
of the Equation (3.1) approach zero as Y- if
2 2 3 B}
| Mp * Mg | <1 or L, <0 k=1, 2, ..., n (3.20)

Case (2). The eigenvalues are not distinct anymore, In this case‘instead
of finding a similarity trénsformation which transforms R into diagonal
form, a similarity transformation can be used which transforms R into the
Jordan canonical form, this case is treated in Reference 15.
3.3 Methods for Calculating the Transition Matrix

- 3.3,1 General

From the description given in the previous sections it is clear that

in order to‘obtain the solutions for a perjodic system using the Floquet-

Liapunov theorem one has to evaluate the transition matrix over one period,
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- This can be done using the methods described in the following sections.

3.3.2 Di;ec; Numerical Inpegrﬁﬁiqn L
This straightforward method, which has been used in Refs, 6 and 28
is based upon equations (3.3) and (3.4). The various columns of the
transition matrix are evaluated by direct numerical integration of the
equations of motion, Equations (3.1), using a fourth order Runge-Kutta
method, with the initial conditions specified by Equations (3.4).
3.3.3 Hsu's Method for Evaluating the Transition Matrix
In a recent series of papers, Hsu (Refs, 23-25) has developed various
methods for approximating the transition matrix during one period; the
most efficient one consists of approximating the periodic matrix é(w) by
a series of step functioms, this method can be considered to be the gen-
eralization of the '"rectangular ripple" (Ref. 1) method to multi-
dimensional systems. The method consists of evaluating the state transi-
tion matrix by dividing a period into a number of equal parts and con-
sidering the equations over each interval to be a set of constant coef-
ficient equations. Due to the fact that the method is new and numer—
ically efficient a description of its essential aspects is given below.
Each period T ia divided into K intervals deﬁoted by

< enen @ =T,

K

Vo k=0, 1, 2...K, with 0 =y, < ¥,

The kEE-interval [wk-l' wk] is denoted by 7, and its size by

k
Ak = wk - wk-l' In the k&2 interval the periodic coefficient matrix

é(W) is rveplaced by a constant matrix C, which is defined by

G =AGY g€ o1 _ (3.21)

i

W
C = A(r) dr
A My -
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where

and

Thus the actual system, Eg. (3.1), is approximated by an approximate system

(k) = k) x(sk) | (3.22)
x(0;k) = C
o0 k -
CWsk)="2. EZ: C [UC-sT~y, )-U(Y-sT-p, )] (3.23)
m=—0 k] ' .

The elementary theory of differential equations with constant coef-

ficients enables one to write the fundamental matrix (or the transition

matrix) of the system with @A(O,k) =1 as

8, (0,K) = exp [kw—¢g_l)gé]exp(gK_lﬂK_l)....exp(glﬁl) (3.24)

and the growth matrix, or approximate transition matrix at § = T is given by

K

H(K) = exp(AKgK) exp(AK_ng_l) cen exp(Algl)_= I exp(AiEi) (3.25)

i=1

With regard to the product sign, ‘it is understood that the order of

positioning of the factors is material and that the kEE factor is to be

placed in front of the (k—l)EE-factor.

It is shown in Reference 25 that when K + «

and

X (§,K) + y ()

2, (4,X) > 2(¥,0)

H(K) = ¢, (T,0) + ¢ (T,0)

The basic numerical problem is therefore the efficient computation of

H(K).

Using the definition of the matrix exponential

2 n
(A.C) (&, C.)
_ i1’ i1 . (3.26)
exp(Aigi) = 5 + Aigi + —5 + e T + .ua
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For small time intervals A; -+ o and the series in Equation (3.26)
converges rapidly, and the value of the matrix exponential can be accu-_

rately approximated by a finite number of terms. Thus

(Aici)j = (8,0 yJ (3.27)
ACHEI _— = AC - — e .
exp (848 =1+ K e i) j=§-1 i

j=1
Therefore the approximate value of the growth matrix can be written as

K g @0

i=1 j=

(3.28)

General error bounds for these approximations are obtained in Ref. 25,

furthermore it can be shown that
®(T,0) ~ H,(K) = 0 (4%) (3.29)

for J 2 2.
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SECTION 4

RESULTS AND DISCUSSION

4,1 Numerical Quantities Used in the Calculations
In computing the numgéical results the following assumptions were

made |
Mass and stiffness distribution was assumed to be constant along

the span of the blade.
Two different kinds of mode shapes were used:

(a) for.the cases when essentially only a study of the trends or
properties of the numerical methods (i.e. numerical experimenta-
tion) was conducted, the mode shapes in flap and lag were both
approximated by the first nonrotating assumed mode shape (Ref. 13)

no=Yy s P -4 - a-x)] (4.1)
This equation satisfies all the boundary conditions of the
problem. When an assumed mode shape is used the elastic coupling
effect as represented by Equations (E.5) through (E.8) was neglected.

(b) For the majority of the cases, where a parametric investigation
of typical hingeless rotor blade configurations was conducted, an
exact rotating mode shape in flap and lag was employed. The exact
rotating mode shapes were generated by usiné'Galerkin‘s method
based upon five nonrotating cantilever mode shapes for each flap or
lag degree of freedom. TFor these cases the elastic coupling effect
was includéd. The method by which the rotating modes were obtained
is essentially identical to that described in Referemce 31 and the

various numerical constants required were taken from Reference 32,

25



The flap and lag coefficients Fi, Li and the various generalized
masses defined in Appendix B were calculated using seven-point Gaussian
integration. The numerical values for these coefficients were calculated
for &/R = 1.0, A = 0,0, B = 1,0 and E-,’l = 0,

As mentioned before, the inflow was evaluated using Eq. (2.24). It
has been shown in Reference 13 that the correct procedure would involve a
trim requirement for which 8 must be changed as a function of U at a
fixed value of CT' This added complication was not considered to be worth-
while in the present trend type study.

Finally, in all the computations the following values were used:

C, = .0l; a=2m; o= 0.05
do

Various other pertinent quantities are specified on the plots.
4,2 Brief Description of the Computer Program

This section describes briefly the computational implementation of
the mathematical techniques described in Section 3, As pointed out in
Section 3, the method of solution is based upon the Floquet-Liapunov
theorem, but the transition matrix at the end of a period is evaluated
using two different approaches: (a) Direct numerical integration,
(b) Hsu's method of approximating a periodic system by a series of
step functions, Consequently, the two compufer programs by which the
results were obtained are identical except for the routine which evaluates
the transition matrix,

The computational steps are outlined below:
1. The generalized massés, and generalized aerodynamic coefficients

i 1 ‘
F'y L7 are evaluated using seven point Guassian integration. In

the calculation of the aerodynamic coefficients the normal and

26



reversed flow region are accounted for as described in

Appendix D.

The transition matrix at the end of one period is computed using

two separate methods

(a)

(b)

Direct Numerical Integration., For this case the elements

of the é~matrix are generated and the resulting equations are
integrated using the fourth order Runge-~-Kutta method available
in the IBM-Scientific Subroutine Package. The numerical inte-
gration is performed four times yielding the four columns of
the transition matrix, The time steps used were the same as
those used for Hsu's method. /

Hsu's Method, The transition matrix is evaluated using Equa-

tion (3.28), After some numerical experimentation it was found

that A = T/50 gives good accuracy. The periodic part in the

. elements of the A-matrix (Appendix C) were evaluated using

Equation (3.21) which yields

e
——]; ' = ' -—2 1 .é.lk)
wk"wk—lfg;rl gsin y d P = sin (;kav%>A¢ 31n( 5 (4.2)

b |
" f cos Y d Y = cos 6}) >—2 sin (QHJ—) (4.3) k
‘Pk-lflk__l wk_l kavg Aw 2

tbk
1 f sin 2 ¢ d ¥ = sin (mpkav) -&}7 sin Ay (4.4)
wk-wk_l "pk,_l g

1
1 fk cos.2 y d Y = cos (zwk ) Eﬂl)' sin Ay (4.5)
wk'lf)k_ 1 wk_ 1 avg

Y+

vhere lpkavg - —ELET_J£¥L s = lPk - 1‘bk—l
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It is apparent from these equations that for small intervals
the periodic terms could be replaced by their value at the
mid-point of the interval,

3. The eigenvalues of the transition matrix at the end of a period

are evaluated using a Jacobi-type eigenvalue routine. The charac-

teristic exponents are then evaluated from Equations (3,18) and

{3.19). Of the four characteristic exponents obtained, two are

associated with the flap degree of freedom, and two are related to the

lead-lag degree of freedom. The critical advance ratio M is the
advance ratio for which one of Qk's becomes positive, The degrees

of freedom are identified by tracing back their history from p = 0.
4.3 Results

The results obtained from the present study are usually given in
the form of plots representing the variation of the real part of the
characteristic exponent with the advance ratio y,

Refore proceeding with the descriprion of the results it is important
to note that Figures 3 through 8 are based upon the assumed mode shapes
Eq., (4.1), and in these cases the elastic coupling effect is neglected.
Figures 10 through 17 have been obtained using the exact rotating mode
shapes and in these cases the elastic coupling effect is included.

Figure 3 shows results for a typical case using Runge-Kutta numer-
ical integration and Hgu's method with different orders of approximation
used in calculating the state transition matrix. This plot shows that
Runge-Kutta and Hsu's method using a fourth order approximation to the

solution of the constant coefficient equations in each interval give
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almost identical results, As shown, the 1ag degree of freedom becomes

unstable for w = .754 and the frequency of oscillation is w, = 1.286.

k
This result clearly indicates that by ﬁeglecting the lag degree of
freedom one could obtain completely incorrect stability boundaries.

Figure 4 is a plot of the C.P.U. time required on an IBM 360/91
computer to calculate the Floquet transition matrices for the four cases
depicted in Fig. 3. As shown on the figure, Hsu's method, even using a
fourth order approximation, is computationally much more efficient than
the fourth order Runge-~Kutta numerical integration scheme,

Figure 5 is a comparison of results between fourth order Runge-

Kutta and Hsu's method for a case that has a relatively high value of Moo

Again the results compare favorably even for high values of .
In the derivation of the equations of motion, some new terms due to

the effect of radial flow were included.*

Figures 6 and 7 show the effects of the radial flow terms on the
stability of the system. The effect of neglecting the radial flow terms
on the real part of the characteristic exponent associated with the flap
degree of freedom is 11lustrated in Fig, 6, MNote that the radial flow
terms have a stabilizing effect on the flapping motion; with the radial
flow terms suppressed, the flap degree of freedom becomes unstable
at 4 = 1.33. The effect of the radial flow Eerms on the lead-lag degree
of freedom is illustrated by Fig, 7; as shown, without the radial flow
terms the instability is completely eliminated and the system becomes
unstable in flap. When the radial flow terms are included, the lag degree

of freedom is the critical one and the system becomes unstable at p = ,754,

%*The radial flow terms in this discussion are those due to the under-
lined term in Eq. (2.23).
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This matter was pursued further to determine which radial flow term was
causing the instability in the lead-lag degree of freedom. The actual
destabilizing term in the-equations-of motion ﬁ;é-faﬁnd fo be an aerody-
namic coupling term. This term couples the.flap motion with the lag
motion in the flap equation. Its form is

2 2 ., 9w v
KL cos IIJ '5;{- g}}- (4.6)
o] [o]

this term is due to the UTUP term in Equation (2.21). The term shown
above is the complete nonlinear one, clearly the one retained in the
equations of motion is the coupling term cobtained from linearizing this
expression,

It has been pointed out by Dr., K,H. Hohenemser, at a recent meeting,*
that this term could be transformed into a constant coefficient term, if the
equations of motion are rewritten in a nonrotating coordinate system such as
multiblade cecordinates.

As outlined in Appendix C, the O(Eg) aerodynamic terms associated
with the lag equation were retained in the derivation. Fig. 8 shows the
effect of these third order terms on the real part of the characteristic
exponent associated with the lag degree of freedom plotted as a function
of the advance ratio y. Clearly the third order terms associated with
damping are the relatively important ones, The third order terms asso-
ciated with damping in the lag equations are underlined by in
element A33 of é, Appendix C,

Figure 9 is given for convenience. It yields the relation between

the first rotating and nonrotating nondimensional flap and lag frequen-

cies, respectively.

%
AHS/NASA-Ames Specialists Meeting on Rotorcraft Dynamics, Moffett Field,
Calif,, Feb. 13-15, 1974,
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As mentioned, the results presented in Figs. 3 through 8 were

obtained by using the assumed mode shape and neglecting the elastic

coupling effect. In order to assess the effect of this assumption the typical
case has also been recomputed with the exact rotating mode shape and the
elastic oﬁpling effect, the results are shown in Figure 10. From Fig. 10 it
is c¢lear that use of the exact rotating mode in flap and lag reduced the

value of M, tou = .653, when the elastic coupling is also included H. is
further reduced to M, = . 583, Thué, for this case, | Seems to be more
sensitive to the type of mode shape used than to the inclusion of the elastic
coupliﬁg effect, ‘It is also interesting t¢ note, that for this case the
elastic coupling effect is destabilizing, while for hover its effect on Bc is
quite stabilizing. (Ref. 30)

It éhould be noted thaf all the results starting from Fig. 10 are
based upon the exact rotating mode shapes and the elastic couplingreffect
is always included.

The importance of the reversed flow region is "illustrated by Fig. 11,
As shown, with the reversed flow fegion the instability occurs at a higher
valﬁe of ¢ than without the reversed flow region. Similar trends were
obgserved in previous studies when only the flapping motion was considered
(Ref. 5), indicating that by neglecting the reversed flow region one could
expect conservative results from a stability point of view. It also
indicates that for this particulér case the effects of reversed flow are
negligible for u < 0,6 and start being important for . > 0;8.

It is also clear from Fig, 11 that the difference in Ho due to
_inciusion of the reversed flow region, for u = 1.0, is approximately 7%,
Thus, the approximate representation of the reversed flow region, described
in Appendix D, cannot significantly affect the accuracy of the results

presented in this study.
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Previous studies (Ref, 12) dealing with the effect of viscous type
of structural damping on the stability boundaries--for hover indicated
that this parameter has an important stabilizing effect. The effect of
this parameter for forward flight is shown in Fig. 12. The stabilizing
offect of structural damping in the lag degree of freedom is evident
from Fig. 12 where the value of U.» at which the characteristic exponent
associated with the lag degree of freedom becomes positive, is plotted
as a function of the viscous type of structural damping in lag. It is
interesting to note that this plot indicates that the greatest stabilizing
effect due to damping is obtained in the range 0 < N1 < .02 (2% of
critical damping), after which the gain in stability tends to level off.
Similar trends were also obtained from stability studies in hover.

Again in order to illustrate the sensitivity of the results to the
mode shape used and the elastic coupling effect three sets of results
are presented., As seen the results are mode shape dependent and inclusion
of the elastic coupling effect tends to reduce the value of Hos at which
the instability occurs.

The effect of collective pitch setting on blade stability is illus-
trated by Fig. 13 for the typical case 6%1 = 1,175 and Bil = 1,28303, As
shown for a low value of collective pitch setting 6 = 0.05 the lag degree
of freedom becomes unstable at Mo = 1,435 and Wy = 1.279. For a high
value of collective pitch setting 6 = .30 the lag degree of freedom becomes
unstable at Mo = .5335 with a frequency of W = 1.332, Similar results
have been obtained for a variety of other cases, the results are not
given here for the sake of conciseness. These results consistently
indicate that there is a degradation in stability in forward flight with

the increase in collective pitch setting. These results alsc indicate
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that the use of a trim procedure, such as developed in Reference 13,
should be required in realistic stability calculations in forward flight.
Furthermore, it seems that the assumption of nonlifting rotors used in-
somelforward flight studies (Ref, 7) can be nonconservative.

Figure 14 illustrates the effect of the Lock number, based on normal
flow, .on the stability of the blade in forward flight. As shown, an
increase in the value of ¥y tends-tO'destabilize the blade in the iég
degree of freedom. For vy = 5.0 the lag degree of freedom becomes unstable

at u_ = 1.425 and w, = 1.283, for y = 10. the lag degree of freedom

k
becomes unstable at U, = .5383 and W = 1.295, and for vy

15, the lag
degree of freedom becomes unstable at M, = 0.568.and Wy = 1;294.

Hingeleqs helicopter blades are usually designed with a first rotaﬁing
flap frequency of 1.1 f_afl < 1.2, Thus the valug of Efl = 1,175 used in
the numerical calculations can be considered to a represéntative value
for tﬁis parameter. On the other hand the rotating lag frequency for
hingeless blades has usually a considerable variation, therefore it is
reasonable to investigate the effect of changing this parameter over a
‘wide range such as 0,2 §_E£1 < 2.5, the results are presented in Fig. 15.
For the sake of completeness two sets of results are presented, those
with the assumed mode shapes and those with the exact rotating mode
shapes and the elastic coupling effect.

Two types of instabilities are spown.in Fig., 15: (a) Those for
which the imaginary part of the_cﬁaracterigtic‘freguency is equal to 0,
1/2 or 1 indicating that the instability is directly due to the periodic
coefficients in the system, for these points the appr0prrate'number

appears inside the circles or squares Indicating the flutter points and
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(b) Those for which Wy has a continuous value, usually close to the
rotating lag frequency, marked by letters A, B, C etc,

As can be seen from Fig, 15 there are two regions where degradation
of atability can be expected with forward flight. One region is between
0.9 f_a- < 1.6, while a second and much smaller fegion is between

Ll

0.45 <

11 < 0.55. The detrimental effect of forward flight for this

region has been predicted also from purely mathematical considerations
{Ref. 9).

The results presented in Fig. 15 seem to indicate that at high
advance ratios a soft inplane hingeless blade with 0.7 < ail < ,8 will be
the most stable; while for a stiff inplane hingeless blade a lag frequency
of W, > 1.6 would be the best.

Finally, it should be noted that, although the points in Fig. 15
have been connected by lines, a possibility exists that additional flutter
points which could be evaluated between the calculated points may not be
exactly on the lines as drawm, this is due to the periodicity of the coef-
ficlents in the equations of motion,

Frevious studies have indicated that droop and preconing can
significantly affect the value of BC at which the linear system.becomes
unstable in hover, It was reasonable therefore to investigate how these
parameters effect the stability of the blade in forward flight,

The results for the typical case are shown in Fig. 16, for this
particular combination of flap and lag frequencies U, is relatively
insensitive to variatioms in BP, while negative angles of droop seem

to be stabilizing and positive angles of droop seem to be quite

destabilizing.
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The effect of the same parameters on a case with a rotating lag
frequency close to Bil = 1.0 is shown in Fig. 17. In this case both
droop and preconing are strongly destabilizing, Thus it is clear that

the effect of these parameters is strongly related to the combination of

rotating flap and lag frequencies for the particular blade configuration.
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SECTION 5
CONCLUSIONS
The most important conclusions which can be drawn from this study
are summarized béiow:

(1) Hsu's method for calculating the Floquet transition matrix at the
end of a perlod is a powerful computational scheme which represents
a significant improvement over prévious methods. Compared to direct
numerical integration, Hsu's method was approximately 2.5 times
faster for a system of four first order equations. For higher order
systems, it probably could be more efficient by one order of
magnitude,

(2) Flapping instability and response studies at high advance ratios can
be inaccurate and misleading due to the neglect of the lead-lag
degree of freedom. The effect of the periodic coefficients on the
coupled flap-lag system shows that, in general, instability can
occur at lower values of advance ratios than when the flap degree of
freedom is considered by itself.

(3) In addition to the instabilities associated with the periodic
coefficients (i.e. with frequencies of 0, 1/2 or 1), the coupled
flap-lag system has the tendency to become unstable due.to an aero-
dynamic coupling effect associated with the radial flow term=s, This
instability, which has a frequency close to fhe rotating lag frqugncy
of the system, usually occurs at values of W much lower than those
for which the flapping degree of freedom becomes unstable,

(4) The effect of the reversed flow region is negligible for u < 0.4, but
it becomes quite important for u > 0.8, The approximation of the
reversed flow region, outlined in Appendix D, seems to be acceptable.

The approximation is better for high advance ratios,
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(5)

o))

(8)

(9)

Viscous type of structural damping in the lead-lag degree of freedom
has a strong stabilizing effect on the instability due to the aerody-
namic coupling effect associated with the radial flow terms.

The walue of the collective pitch setting has a considerable effect

on the value of the advance ratio at which instabilities due to the
pericdic coefficients or the radial flow aerodynamic coupling terms
occur. An increase in collective pitch is destabilizing, therefore
high advance ratio studies which do not include this effect
(nonlifting rotors) may yield unconservative results,

The blade Lock number has a destabilizing effect on flap-lag
instability due to aerodynamic coupling effect associated with
radial flow terms.

The results obtained seem to indicate that certain values of rotating
lag frequencies can provide improved aerocelastic performance for
hingeless blades at high advance ratios.

Droop and preconing can significantly affect blade stability in
forward flight. The effect of these parameters is dependent upon
the particular flap and lag frequencies of the blade configuration

being considered.
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APPENDIX A
ORTHOGONALITY CONDITIONS

The orthogonality condition for a rotating beam vibrating out of- its

plane of rotation is obtained from Friedmann (Ref, 13). with 8 = 0
1 1 1 '
__1__ "ot f ' r 3-[ - - - = _
5 [(El)yni e dxo + T}i Ny I m(xl+e1)dxl 4:11-:O 0 (A.1)
2L (5] X, .
for 1 # k and
1 1
= f(EI) 'i ax_ + f(n' 2 3fm(x spdx, | dx_ =
78 "o y
32 1 T (4.2)
Upi f 2 - .
—_— mn, dx for i=k
Q2 N o]
o

The orthogonality condition for a rotating beam vibrating in its plane
of rotation is

1 | 1 1

l 1 n - 3 1 ' - - - - L4
5 f (EIIZ)z Yy Y dxo + £ fyi Yo Im(x1+el)dx1 d'x‘J
QL %o o X )
3 -
- £ _[inYmdxo_o,

for 1 ¥ m and

—5 f(EI) ap? ax + 23 f( fm(x +o,)dx_

1 szg 1 (A.4)

_23fmy2d:‘:=______i fmy‘zdi

i o] 2 i o
o 2 [o!

when i = n

These relations determine Wpss Wy e
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APPENDIX B
COEFFICIENTS ASSOCIATED WITH GENERALIZED MASSES,
DAMPING AND AERODYNAMIC LOADING

The non-dimensionalized general masses are

N
N 1
fa Y
L

P e = ”1 ™ Cf dx, /Ib

Mg = % f‘“” d"/Ib
c 3 l /b

=3

[ 1 z
o
(M) =3 fay, fn'n'di ax | /1
nildl "o T \% k & L b
! X
M =R3 me fDY'Y' dx, | dx I
Y i m'r 1 b
imr | o o -
1 1
1 2,3 '
B =Ti-fn m{x Ydx [ dx
i
b "o X
1 1
33 __Qifn' my_ dx,| dx
im b 0 i E m 1 [
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The viscous type of structural damping ratio is defined by

Listed below are the coefficients associated with aerodynamic loads.

These integrals are evaluated between the lower limit A and the upper limit
— _ _ ¥
B where A and B are the tip loss factors. The calculation of the aerodynamic

loads in the mixed or reversed flow regions is described in Appendix D.
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APPENbIX C
GENERALIZED AERODYNAMIC LOADS AND ELEMENTS
OF THE COEFFICIEHT MATRIX AND FORCING VECTOR
- €.1 Generalized Aerodynamic Loads
In evaluating the generalized aerodynamic loading terme, one encounters

a considerable number of terms whiéh are small and therefore negligible, In
order to neglect the ;ppropriate terms, a rational ordering scheme is used
which enables one to neglect terms in é systematiﬁimanner. "In this scheme
all the importgnt parameters of the problem are assigned orders of magnitude

in terms of a typical displacement quantity € thus:

N, = 0(1) 8, = 0(ep) Cpo/2 = OCEDZ)
Yy = 0L fhm = O(ED) | x = 0(1)

e =0 g =0y u = 01)
Yy = 0@ B =o0(e)  stap = 0Q1)
Bp = 0(ep) A = 0(ep) cosp = 0(1)
BD = O(QD) B = D(sD)

An order of magnitude analysis of the equations indicates that in
general terms up to and includiiag O(QDZ).must be included in the linearized
flap equation, while for the lag equation some 0(€D3) terms have to be
retained. Thesé higher order terms in the aerodynamic part of the flap and
lag equations will be marked.by a',//};nd neglected.

The aerodynamic 1oading'terms LZ and LY are given by the expressions:

. 3. 2]-2 - - '
] Lz = apr R™Q [% 0+ 2xp sinybd - 2xu E?sw_ym E?_?__
- 2% @B o2ty # @+:”—2-(1 2006-u° sin 20 v'h_ 6
XU e D -2x ¢ Ym o 5 -cos 2y)0-u” sin 2¢ Ym n

. PRECEDING PAGE BLANK NOT FILMED
67



2
- -f)/zw B 8%-2u sing & z h 0+ “ (1%2@)\«“1 yr h h_ 8
2 * M

2 .
~ XU cosy g, - M sinp = = My gk U sini- g— stn 2p(B+6,)

' ' 1) * ]
-5 sin 2y g + U coswvmhm RN B FHcosY YR A

, 2 % . uz
+ U c% 8 = N8, +u COM B + 5~ (l+cos }pﬁns(epﬂsn)

o & #*
+ E- (1+cV( BN, 8, + 2 Y nkgk + 3 Yohpt t % Ypby B cosW(Bp+Ey)

P 2

+ = h U cosyn g, + w/ﬂ(ﬁ 0 (C.2)
R 'm W8 t 2 Al .

_ 3,2 ; o - L2 3 ’

= - abp, R0 leLR M8y X+ F M8y W osind - ¢ kgk W cosy Y, hm
L % 2,2 * * - oy

-z D 8 - ;f ™81 Ymhm + Ax + Au siny - Ay cosy Ymhm

- MU cos D g - A = h +u cosl,b(ﬁ )x + 5 sin 2I,D(BP+BD)

2 2 |
- (1+cos 20) (By#8)v b - Y= (l+cos WBD)BD 0 cosp(8,*8,) ¥ Y b

2 2

2 2
4 * % L %
- JZL (Hcos}ﬁﬁk(gks 6-u cosy nkgk R Yol J Y] M B8y ~ 22 § N8y

2

L
-2 = nkgku cosy (B +B ) kgk U cosy n£g£ - A% = 22 COSIP(BP"‘BD)

68



2 .
- 2 cosp ny g, - 5 (T+cos 20) (B,+8) *u(4cos 20) (B,#B )N g,

2 ' C

10 ' ' Do | =2
- 5~ (Mcos 2)ny g, Ny g, + 2| %

+ 2)_c_1.1 siny - 72:-:11 cosy Yl:l hm

2
- - %
- 2%l ¢ wBDB—Zx%Ymhm+g—-(l-cos 211;)-—1.12 sinzwyn;hm
-2
£ * u
2y BDB-Zu SianEY hm+5—(1+cos 2y
+u (l+coi#}w§;;hm BD 8 + 2u cofi>y)/;m Yp b+
L.ox 822 #
+t e wBDBEYmhm+7Ym n Tr T (c.3)
R

Where the terms in the lag equation underlined by are 0(€D3) . Also,
terms in both equations associated with radial flow are underscored with
Using these equations and the definition of the flap and lag coefficients

given in Appendix B, the generalized aerodynamic forces are '
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+ :F_ﬂ_m_u_cisf E -g—k_hm + Fikm (E) 8 hm (C.4)
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C.2 Elements of the A Matrix
The elements of the A matrix, which defines the equations of motion when
written as first order differential equations, are given below

A =1; A

1 =A,.=A, =0

22 23 24

A, =1; A, . = A, = A

43 41 = Bgp = A4 =0
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C.3 Elements of the E Vector

The elements of the f vector, which defines the forcing terms when the
equations of motion are written as first order differential equations, are
given below

£, =£, =0
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1 R
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APPENDIX D
REGION OF REVERSED FLOW

The ecircular region of reversed flow, which exists over the retreating
blade, is quite well known., In past treatments of reversed flow it has been
customary (Ref, 3) to define three separate regions: (a) normal flow, (h)

(b} reversed flow, (c)‘mixed flow, and evaluate the appropriate aerodynamic

expressions for each region. When this model is used together with a modal

representation of the blade, the evaluation of the generalized aerodynamic
expressions Fi’ Li becomes quite cumbersome, and a more convenient procedure
had to be devised.

The approximate reversed flow model developed for the present study
consists of replacing the circular region by an approximate region which has
two straight boundaries and a circular one as shown in Fig., 2, The approxima-
tion is based on the assumption that the area contained in the circular region
must be equal to the area contained in the approximate region. Two separate
cases must be considered: (1) W <1, (2) pu2 1,

Case (1), For u < 1, the diameter of the circular sector is taken as W.
Simple geometric considerations show that the angle o is always a
constant given by

o= m/2 (p.1)

Case (2). For u 21, simple geometric considerations show that

o=m-2 sin_l(%) + u2 sin 1 (%)m u2~1. (D.2)

Thus for U < 1 the generalized aerodynamic loads in the mixed flow region

are calculated from

U B
— 22 ./' - -
AFi RN TN Ry Lz Ny dxo + sz Ny cb‘:o ' ' (0.3)
9] Ib A u
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*1 Qzlb Y2 Y ,i ° TR i 9
while for u =z 1.0
— 12 ¥ - '
By = o |- Loy & - 0.5)
9] Ib A
_ 22 L .
ALi=-"'Q—2";- - ALY 'Yi dxo ="-—ALi (D.6)
) b

These equatlons are based on the assumption that the lift curve slope in
the reversed flow region is equal to the negative value of the 1lift curve

slope in normal flow.
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APPENDIX E
ELAS‘IIC COUPLING
The angle of- collective pitch 0 is the source of the so called elast-:ic
coupling effect in cantilevered rotor blades. This effect couples the bending
perpendicular to the hub plane with the bending parallel to the hub plane.
For convenient representation of this effect, the elastic coupling terms in

Eq. {(2.1) must be rewritten

(ED), cgsze + (D) 8in’ = ED + [(EI)Z—(Ei)Y] sin’6 (E.1)

1), sin’0 + (EI)_ cos”0 = (ED) - [(EI)Z—(EI)J sin? (E.2)
Defining

E, = [(EI)Z—(EI)y] cinZs .. | | | (E.3)

E_, = [(EI)Z—(EI)y] s1n8 cosb (E.4)

When applying Galerkin's method on the equations of motion, it is

convenient to define the following additional expressicns

1
1 TR L
— 2 ,[Ecl Ny M 4%, |
b
1
1 B nmoon d..
s £ 0. cl ni Ym xO
im = \ 921 (E.86)
b
1
1 " "
- I3 A Bar Vi Y 9%
Eim = 921 (E. 7
b
1
1 oo
— L LEC?_ Yi nk,dxo _
Bix = N (E.8)
b .
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